THE SILURIAN SALT DEPOSITS IN EASTERN LAKE, NORTHWESTERN ASHTABULA, AND NORTHEASTERN GEAUGA COUNTIES, OHIO U.S. GEOLOGICAL SURVEY Open-File Report 79-269 Prepared in cooperation with U.S. Department of Energy # UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Water Resources Division THE SILURIAN SALT DEPOSITS IN EASTERN LAKE, NORTHWESTERN ASHTABULA, AND NORTHEASTERN GEAUGA COUNTIES, OHIO by Stanley E. Norris An addendum report to accompany Open-File Report 78-684, "Hydrologic environment of the Silurian salt deposits in parts of Michigan, Ohio, and New York." Prepared for the U.S. Department of Energy Open-File Report 79-269 Columbus, Ohio December 1978 # CONTENTS | | | | Page | |---------|------|---|------| | Abstrac | ct - | | 1 | | Introdu | uct: | ion | 1 | | Occurre | ence | e of the salt beds | 3 | | Charact | ter | of the salt beds | 9 | | В | salt | :s | 9 | | D s | salt | cs | 14 | | E s | salt | | 14 | | F 1 | sal | lts | 14 | | F 2 | sal | Lt | 15 | | Selecti | ion | of sites for test drilling | 15 | | Referen | nces | 5 | 15 | | | | | | | | | ILLUSTRATIONS | | | | | | Page | | Figure | 1 | Map showing topography of the land surface - | 2 | | | 2 | Map showing location of wells listed in table 1 | 4 | | | 3 | Graphs showing gamma, caliper, and compensated density logs of a well in Geauga County, showing how salt beds were identified | 6 | | | 4 | Map showing occurrence of salt beds | 8 | | | 5 | Map showing structure contours on the upper surface of the "Big lime" | 10 | # ILLUSTRATIONS | | | | Pa ge | |-------|---|---|-------| | | 6 | Map showing structure contours on the upper surface of the F1A salt bed | 11 | | | 7 | Map showing isopachous lines of the thickness of the stratigraphic interval between the base of the lowest salt and | | | | | the top of the highest salt | 12 | | | 8 | Map showing aggregate thickness of the salt beds | 13 | | | | | | | | | TABLES | | | | | | Page | | Table | 1 | Data on salt beds | 5 | | | 2 | General description of the salt beds | 7 | | | | | | | | | | | | | | | | # Conversion Factors | | for conve | | Engli | sh u | nits | to the | | |-------------------------------------|-----------|-------------------------|-------|---|---------|--------|--| | International | System of | Units | (SI) | are | given | below: | | | Multiply Englis | sh units | bу | | to ob | tain Si | units | | | inches (i
feet (ft)
miles (mi | | 25.40
0.304
1.609 | | millimeters (mm)
meters (m)
kilometers (km) | | | | # THE SILURIAN SALT DEPOSITS IN EASTERN LAKE, NORTHWESTERN ASHTABULA, AND NORTHEASTERN GEAUGA COUNTIES, OHIO by Stanley E. Norris #### ABSTRACT Five salt zones, comprising single or multiple salt beds interbedded with dolomite, dolomitic shale and anhydrite, occur in a 250-square-mile area in eastern Lake, northwestern Ashtabula, and northeastern Geauga Counties, Ohio. The aggregate thickness of salt-bearing rocks, from the base of the lowest salt to the top of the highest salt, ranges from about 300 feet in the northern part of the area to more than 450 feet in the southern part. The aggregate thickness of salt, exclusive of the intervening rocks, also increases southward, from about 100 feet to more than 200 feet. The thickest salt bed, the F1A salt, is 35 to 38 feet thick in northeastern Geauga and southeastern Lake Counties. #### INTRODUCTION This addendum report was prepared for the U.S. Department of Energy (DDE) under provision of interagency agreement No. EY-76-C-05-4399, between DDE and the U.S. Geological Survey. It is a supplement to the open-file report, "Hydrologic environment of the Silurian salt deposits in parts of Michigan, Ohio, and New York," by S. E. Norris (see References). That report describes in general terms the occurrence and fluid environment of the salt beds and recommends for additional investigation two areas in Michigan, one area in Ohio, and one area in New York. In these areas the salt beds are less than 3,000 feet below the surface and appear of sufficient thickness to warrant consideration as possible repositories for nuclear waste. This report presents information about the occurrence, thickness, and character of the salt beds in the recommended study area in Ohio, and is intended primarily as a guide for the selection of sites for test drilling. The area of interest contains about 250 square miles and is outlined on most of the illustrations in this report. It extends from Painesville on the west to Ashtabula on the east, and from the lakeshore south to the vicinity of Chardon (fig. 1). Figure 1.--Topography of the land surface. The land surface is relatively flat in a 5-mile-wide band along the lakeshore but becomes hillier and higher to the south (fig. 1). It reaches an altitude of more than 1,200 feet in the southern part of the area. Data on the salt beds were derived chiefly from geophysical logs of oil and gas wells in the files of the Ohio Division of Geological Survey. The location of the wells and their state permit numbers (used for identification) are shown in figure 2. Table 1 lists the salt beds and their depths and thicknesses as determined from the logs. The log data are supplemented by data from a few core or sample descriptions, also from Ohio Division of Geological Survey files. Gamma, compensated density, and caliper logs were used to identify the salt beds. Clifford (1973, p. 3-5) describes the basis for the interpretation. The clarity with which the salt beds are revealed by the logs is shown by the example in figure 3. #### OCCURRENCE OF THE SALT BEDS The salt beds in northeast Ohio are part of the Salina Formation of Silurian age. This formation consists chiefly of carbonate rocks (limestone and dolomite) that are bounded above and below by thick shale beds and that occur near the middle of the stratigraphic sequence. The carbonate-rock section is known to oil-and-gas-well drillers as the "Big lime." The position of the "Big lime" within the general sequence, and that of the salt beds within the "Big lime," are shown in the generalized columnar section which appears, as an inset, in figures 4 through 8. Five generally recognized zones of salt-bearing rocks occur in the area of interest. These zones contain either single or multiple beds of salt, interbedded with dolomite, dolomitic shale, and anhydrite. The salt beds designated, in ascending order, as the B, D, E, F1 and F2 salts. The D salt consists typically of two beds and the F1 salt of three beds, identified by letters as shown in table No letter designations are given the multiple All these salts are present in the southern the B salt. half of the area of investigation; the E, F2, and F1 salts, disappear from the stratigraphic sequence progressively northward, as shown in figure 4. The depth to the uppermost salt bed ranges from about 1,900 feet along the lakeshore to about 2,900 feet near the southern boundary of the area of interest. The increase in depth results from both the relatively high terrain in the Figure 2.--Location of wells listed in table 1 (number is state permit number). | State
permit
no. | Alti-
tude
(ft) | Depth
to
"Big
lime"
(ft) | Depth
to
F2 | Thick-
ness
of
F2 | Depth
to
F1 | Thi | icknes:
F1B
(ft) | FIC (ft) | Depth
to
E
(ft) | Thick-
ness
of
E
(ft) | Depth
to
D | Thic DA (ft) | kness
DB
(ft) | Depth
to
B
(ft) | Aggre-
gate
thick-
ness
B
(ft) | Interval
top
to
base
B
(ft) | Aggregate thickness all salts (ft) | |--|--|--------------------------------------|---|---------------------------------------|--------------------------------------|------------------------------|----------------------------|--------------------------|--------------------------------------|-----------------------------------|--------------------------------------|----------------------------|----------------------------------|--|---|--|------------------------------------| | 514
91
232
234 | 724
852
876
834 | 1723
2730
1702 | (ft)

 | 0
0
0
0 | (ft)

2296
2220
2274 | 0
28
30
44 | 0
14
10 | 0 20 | 2382
2360 | 0
2(?)
4(?) | 2173
2449
2390
2368 | 4 6 6 | 16
35
18
18 | 2309
2580
2520
2512 | 69
82
52
58 | 89
124
80
66 | 89
161
140
126 | | 265
142
162
185
576
720 | 823
845
856
838
835
838 | 1657
1722
1732
1727
2820 | ======================================= | 0 0 0 0 | 2236
2282
2302
2296
2302 | 28
30
32
66
31 | 26
28
22

34 | :: | 2344
2398
2410
2418
2424 | 4
3
4
4 | 2400
2450
2462
2468
2476 | 8
8
16
6 | 28
26
30
24
34
28 | 2520
2606
2588
2615
2601
2524 | 64
60
62
74
77
54 | 96
90
94
101
123
68 | 156
157
184
186
128 | | 313
6611/
3 <u>T</u> / | 710
689
820 | 1479
1445
1598 | | 0 0 | 2050
2050
2033 | 36
38
44 (?) | | :: | 2330 | 0 0 | 2384
2182
2163 | 6
8
8 | 33
33 | 2310
2294 | 80
99 | 130
133 | 159
184(| | 196
168
82 | 861
1004
1085 | 1722
1859
2013 | 2604 | 0
0
28 | 2308
2448
2662 | 38
34
34 | 30
30 | | 2568
2782 | 0
3
4 | 2426
2622
2838 | 8
10
4 | 24
26
26 | 2548
2752
2972 | 82
97
70 | 122
134
96 | 152
200
196 | | 99
361
343
348 | 976
807
1016
1031 | 1950
1779
1961
1969 | 2540
2325

2555 | 27
23
0
17 | 2595
2378
2530
2600 | 35
38
40
38 | 30
30
32
40 | 6 | 2718
2504
2673
2734 | 4(?)
4
3
6 | 2773
2560
2726
2787 | 12
6
8
10 | 27
28
30
22 | 2913
2696
2864
2918 | 61
66
67
68 | 119
124
126
102 | 196
195
186
201 | | 855
882
88
896
105 | 810
1088
882
862
818 | 1806
2045
1802
1801
1761 | 2364
2636

2302
2276 | 30
28
0
8
7 | 2420
2694
2350
2326
2309 | 42
32
30
42
32 | 36
26
8
26
28 | 6 | 2546
2810
2448
2456
2425 | 6
4
4
3
4 | 2602
2870
2500
2506
2480 | 10
8
5
9 | 30
24
25
28
25 | 2714
2998
2642
2642
2610 | 71
80
64
84
84 | 126
128
128
130
140 | 225
202
136
206
184 | | 440
447
13 <u>1</u> /
461
586 | 829
818
838
861
849 | 1752
1731
1715
1706
1650 | 2237 | 0
0
36
0 | 2284
2272
2310
2266
1369 | 42
32
42
44
6 | 36
36
25
 | 3 | 2414
2410

2350
2288 | 6
3(?)
0
5(?) | 2464
2450
2471
2392
2342 | 10
5

4
6 | 33
30
14
22
24 | 2592
2579
2516
2520
2460 | 82
112(?)
85
72
62 | 134
145
85
100
96 | 209
218
205 (
147
126 | | 737
86
4 <u>1</u> /
21-A
2121/ | 838
875
651
636
682 | 1610
1858
1368
1378
1356 | 2428

 | 0
22
0
0 | 2170
2480
 | 58
33
0
0 | 30
0
0 |
0
0 | 2264
2600
 | 6
8
0
0 | 2318
2656
2052
2034
2036 | 6
6
9
6 | 28
32
26
16
28 | 2440
2807
2221
2146
2184 | 64
97
43
60
70 | 128
125
67
101
100 | 162
228
78 (
82
104 | | 191
336
137
358
509 | 984
982
1073
1041
865 | 1895
1904
2228
2174
1939 | 2453
2470
2820
2762
2536 | 20
18
18
23
32 | 2502
2504
2855
2802
2586 | 32
35
42
36
36 | 28
20
37
24
30 | 4
4
15
12
12 | 2620
2626
3016
2942
2732 | 5
3
10
8 | 2674
2676
3084
3003
2794 | 3
5
10
10 | 24
30
32
23
28 | 2802
2808
3226
3140
2940 | 80
75
52
47
66 | 106
136
103
80
98 | 196
190
216
183
220 | | 569
597
598
700 | 810
809
1036
988
987 | 1076
1964
1132
2130
2118 | 2456
2554
2760
2718
2717 | 8
382/
22
26
15 | 2458
2614
2800
2764
2754 | 40
36
40
44
42 | 36
36
28
40
46 | 10
12
10
8 | 2624
2764
2946
2918
2907 | 6
8
10
8
7 | 2682
2828
3010
2978
2969 | 18
10
10
10 | 30
28
30
30
31 | 2822
2964
3156
3122
3113 | 76
50
46
48
61 | 122
108
86
88
97 | 212
216
198
216
220 | | 703
704
705
706
707 | 1069
1094
1043
924
949 | 2189
2212
2166
2076
2071 | 2780
2806
2762
2668
2674 | 20
24
20
40 <u>2</u> /
26 | 2816
2848
2800
2732
2718 | 42
34
38
46
36 | 26
32
30
36
34 | 16
8
8
8 | 2972
2994
2948
2878
2866 | 12
8
8
6
4 | 3036
3056
3014
2934
2926 | 8
10
6
8 | 28
28
24
26
28 | 3180
3168
3152
3074
3070 | 44
42
54
54 | 84
100
90
100
90 | 196
186
188
224
194 | | 710
97
197
89
42 | 991
1265
1227
12 5 5
1118 | 2119
2310

2155
2196 | 2706
2964
2754
2792 | 36 <u>2</u> /
32
38
32
0 | 2764
3014
2818
2852
2830 | 44
42
34
35
42 | 32
28
32
32
44 | 8
6
4
8 | 2916
3160
2946
2982
2986 | 10
8
8
8 | 2976
3227
3009
3050
3048 | 10
10
12
12
11 | 30
26
28
20
32 | 3122
3398
3146
3180
3200 | 54
31
76
64
68 | 90
48
108
115
110 | 220
183
232
211
217 | | 199
200
201
204
205 | 1109
1147
1186
1124
1154 | 2189
2193
2238
2232
2201 | 2810
2854
2832
2818 | 0
12
30
24 | 2816
2852
2912
2872
2862 | 36
34
34
38
34 | 40
24
20
36
22 | 8

8
30 | 2968
2984
3038
3020
2998 | 6
10
6
10
8 | 3032
3046
3100
3084
3060 | 12
10
10
10 | 24
20
24
30
26 | 3174
3190
3240
3228
3206 | 56
44
50
58
52 | 110
96
88
92
86 | 182
154
174
214
212 | | 214
216
246
256 | 1119
1122
1214
1283
1137 | 2180
2202
2243
2302
2191 | 2788
2810
2870
2932
2846 | 20
16
20
14 | 2824
2842
2904
2962
2876 | 42
34
36
22
40 | 28
36
30
24
36 | 10
10
10
6 | 2970
2988
3042
3098
3024 | 10
8
10
8 | 3036
3050
3108
3164
3090 | 10
10
10
6 | 26
24
28
10
30 | 3180
3194
3250
3306
3262 | 46
44
54
56
38 | 88
88
92
112
72 | 192
182
198
146
187 | | 52
185
188
190 | 1154
1121
1154
1123
1136 | 2204
2197
2252
2205
2193 | 2822
2806
2856
2814
2826 | 16
34
22
34
26 | 2854
2856
2902
2862
2862 | 38
38
46
36
36 | 40
22
40
20
38 | 6
10
10
10 | 3000
2994
3064
3002
3012 | 8
12
8
6 | 3060
3058
3128
3068
3080 | 14
8
10
10 | 30
28
26
26
26 | 3204
3198
3266
3212
3224 | 54
50
44
58
44 | 84
88
72
84
84 | 206
202
206
200
196 | | 208
249
20
104
21 | 1231
1133
1126
1175
1154 | 2275
2193
2060

2062 | 2896
2808
2655
2714
2650 | 24
18
15
36
22 | 2934
2842
2680
2780
2698 | 44
36
35
38
31 | 30
32
30
32
34 | 8
8
12
4
4 | 3078
2988
2822
2908
2823 | 10
8
6
14
6 | 3142
3052
2885
2976
2880 | 10
8
10
6
8 | 26
26
30
30
28 | 3272
3196
3008
3106
3015 | 48
74
79
50
68 | 92
116
140
104
125 | 200
210
217
210
201 | | 22
162
156
169 | 1135
688
685
697
703 | 2052
1362
1345

1375 | 2624 | 24
0
0
0
0 | 2662
2002
1983
2006
2004 | 34
26
44
26
22 | 30
12

18
20 | 6 | 2796 | 6
0
0
0 | 2852
2150
2122
2152
2152 | 6
8
5
6
4 | 31
20
20
22
30 | 2986
2275
2248
2304
2273 | 80
72
108
102
113 | 100
139
170
152
156 | 217
100
177
130
147 | | 22-L ¹ /
0-2 ¹ /
11 ¹ /
14 ¹ /
17 ¹ / | 576
621
715
585
581 | 1155
1188
1367
1175
1163 | 2065
1898
1854 | 0
0
55
33
26 | 1875
1927
2148
1957
1903 | 32
57
79(?
19
30 | 35 | :: |

 | 0 0 0 0 0 | 2045
2128

2107
1873 | 10

9
8 | 25
40

16
20 | 2170
2316
2446
2258
2182 | 107
74
49
59
95 | 135
74

79
148 | 209
114
183
154
204 | | 33
56 <u>1</u> /
65 <u>1</u> /
81 | 643
627
646
649
640 | 1280
1250
1285
1274
1246 | 1996
1984
2005
1995
1878 | 12
25
35
35
38 | 2036
2062
2060
2057
2042 | 34
73
47
38
34 | 44

28
32
36 | | :: | 0 0 0 | 2218
2227

2219
2212 | 8

6
6 | 24
10

22
22 | 2348
2431
2380
2351
2338 | 82
51
62
103
72 | 148
72
62
159
108 | 204
159
172
236
208 | | 115
142
179
24 | 633
701
677
1125
880 | 1252
1360

2245
2056 | 1982

2850
2642 | 38
0
0
20
28 | 2048
2032
1948
2890
2684 | 30
30
32
40 | 34
30
22
28
32 |

10
14 |

3041
2810 | 0
0
0
0
9 | 2226
2194
2094
3108
2888 | 6 8 8 8 | 14
26
22
24
28 | 2352
2320
2318
3216
3026 | 78
102
102
66
52 | 108
150
140
138
86 | 200
196
1èo
205
210 | Figure 3.--Gamma, caliper, and compensated density logs of a well in Geauga County showing how salt beds were identified. (Log from files of Ohio Division of Geological Survey.) Table 2.--General description of the salt beds. Figure 4. -- Occurrence of salt beds. southern part of the area and the southerly dip of the strata. The sedimentary rocks dip southeastward about 25 feet per mile, as shown by structure contour maps on the surfaces of the "Big lime," figure 5, and the F1A salt, figure 6. The stratigraphic interval between the base of the lowest salt and the top of the highest salt thickens southwestward from about 300 feet to about 475 feet (figure 7). The salt beds, exclusive of the intervening rocks, also increase in thickness southward, from about 100 feet in the northeastern part of the area to about 250 feet in the southern part (figure 8). #### CHARACTER OF THE SALT BEDS A general description of the salt beds from literature sources is given by Norris, 1978. Additional descriptions, based on logs and core data from the oil and gas wells listed in table 1, are presented here and summarized in table 2. The locations of the wells are shown in figure 2. #### B salts The log of a core from well No. 17 (table 1 and fig. 2) drilled near Painesville lists 10 salt beds, all described as "dirty salt," ranging from 5 to 16 feet each in the B salt interval. The salt beds are separated by 2 to 19 feet of dolomite and dolomitic shale containing "some salt." Another core description, from well No. 561, 10 miles southwest of Ashtabula, lists 9 salt beds in the B zone, of which one is 22 feet thick; the others range in thickness from 4 to 10 feet. The intervening beds, consisting of dolomite and dolomitic shale, range in thickness from a little more than a foot to 16 feet. The exact thicknesses of the salt beds in the B salt interval are difficult to determine from the geophysical logs, but individual beds appear to be less than 15 feet thick in most wells. For the entire area, the B salts average 67 feet in aggregate thickness and the interval between the top and bottom of the B salt, including the intervening beds, averages 107 feet. Figure 5 .- Structure contours on the upper surface of the "Big lime". Figure 6. -- Structure contours on the upper surface of the FIA salt bed. Figure 7.--Thickness of the stratigraphic interval between the base of the lowest salt and the top of the highest salt. Figure 8.--Aggregate thickness of the salt beds (intervening rocks not included). ### D_salts The D salts, 80 to 110 feet above the B salts, consist generally of two beds, separated by 4 to 6 feet of rock. The lower bed, designated DA, is 6 to 10 feet thick and the upper bed, DB, is 20 to 30 feet thick in much of the area. The maximum thickness of bed DB is 34 feet in well 576, about 10 miles south of Ashtabula. #### E salt The E salt is a single bed 2 to 14 feet thick; the thickness, generally, is 4 or 5 feet. ## F1_salts The principal salt sequence in the area of interest, and the one most likely to be considered for further investigation as a possible repository for nuclear waste, is the F1 salts. In much of the area the F1 salts consist of three individual salt beds, designated, in ascending order, F1A, F1B, and F1C. Salt F1A, the thickest of the three, ranges from 22 to 46 feet and averages about 35 feet in thickness. The average aggregate thickness of all three salt beds is 78 feet. The stratigraphic interval in which these beds occur; that is, the interval extending from the bottom of F1A to the top of F1C, averages 91 feet. In parts of Ashtabula and Lake Counties the F1 salt consists of only two salt beds and in some places only one. Reduction in the number of salt beds is not accompanied, generally, by an increase in thickness of the remaining beds. The thickest single bed is 66 feet thick, in well 485. This well is about 10 miles south of Ashtabula and 2 miles east of the area of interest. The depth to the F1A salt can be determined, approximately, from figures 1 and 6. At a given site the altitude of the land surface (figure 1) can be added to the corresponding altitude (below sea level) of the F1A salt (fig. 6). Consider, for example, a site in the vicinity of Chardon. Here the surface altitude, as shown in figure 1, is about 1,200 feet. The altitude of the F1A salt bed at this site, shown in figure 6, is about 1,550 feet below National Geodetic Vertical Datum of 1929 (NGVD); (formerly mean sea level). The depth to the F1A salt, therefore, is approximately 2,750 feet. #### F2 salt The stratigraphically highest salt is the F2 salt, which is present only in the southern half of the area (fig. 4). Near its northern terminus, the salt is about 450 feet above the base of the lowest (B) salt (see figs. 4 and 7). The F2 salt consists, generally, of a single bed 24 feet in average thickness. The greatest thickness is 38 feet, in wells 109 and 115, located about 4 miles south of Painesville and 2 miles west of the area of interest. #### SELECTION OF SITES FOR TEST DRILLING The most favorable area for test drilling, based on the maximum number of salt beds present (fig. 4), and the greatest aggregate thickness of the salt beds (fig. 8), is the southern half of the area of interest. All salts listed in table 2 occur in this part of the area and their thicknesses are near maximum. For example, the thickness of the F1A salt, the thickest single bed of the entire salt sequence, is an estimated 35 to 38 feet here. The aggregate thickness of all the salt beds is estimated at about 215 feet but may be as much as 230 feet locally (see table 1, well 197). The work that remains to be done to select the best drilling site is a field investigation to locate population centers, cultural works, natural features, and a suitable terrain for drilling. #### REFERENCES - Clifford, M. J., 1973, Silurian rock salt in Ohio: Ohio Dept. Nat. Resources, Div. Geol. Survey Rept. Invest. RI-90, 42 p., 21 figs., 4 pls., 5 tables. - Norris, S. E., 1978, Hydrologic environment of the Silurian salt deposits in parts of Michigan, Ohio, and New York: U.S. Geol. Survey open-file report prepared for U.S. Energy Research and Development Administration, 44 p., 11 figs.